4 Memory Architecture

4.1 Memory Address Map

The Epiphany architecture uses a single, flat address space consisting of 2> 8-bit bytes. Byte
addresses are treated as unsigned numbers, running from 0 to 2°* — 1. This address space is
regarded as consisting of 2°° 32-bit words, each of whose addresses is word-aligned, which
means that the address is divisible by 4. The word whose word-aligned address is A consists of
the four bytes with addresses A, A+1, A+2 and A+3. Each mesh node has a local, aliased, range
of memory that is accessible by the mesh node itself starting at address 0x0 and ending at
address 0x00007FFF. Each mesh node also has a globally addressable ID that allows
communication with all other mesh nodes in the system. The mesh-node ID consists of 6 row-ID
bits and 6 column-ID bits situated at the upper most-significant bits (MSBs) of the address space.
The complete memory map for the 32 bit Epiphany architecture is shown in Figure 5.

Figure 5: Epiphany Global Address Map

GLOBAL SPACE
CORE_63_63 OxFFF00000
CORE_63_3 0xFC300000
CORE_63_2 0xFC200000
CORE_63_1 0xFC100000
LOCAL SPACE CORE_63_0 0xFC000000
0x000F0000 MEMORY-MAPPED REGISTERS

| CORE_1_63 0x07F00000

CORE_1_3 0x04300000

RESERVED i CORE_1_ 2 0x04200000
| CORE_1_1 0x04100000

CORE_1_ 0 0x04000000

| CORE_0_63 0x03F00000
0x00006000 INTERNAL MEMORY BANK 3

! CORE_0_3 0x00300000
0x00004000 INTERNAL MEMORY BANK 2 :

i CORE_0_2 0x00200000
0x00002000 INTERNAL MEMORY BANK 1 CORE 0 1 | 0x00100000
0x00000000 INTERNAL MEMORY BANK 0 LOCAL MEMORY T 0x00000000
17 Copyright 2011-2012 Adapteva. All rights reserved REV 3.12.12.18

Figure 8: eMesh™ Routing Example

1. Core 32,32 sends a read
request to core 39,39 and
specifies its own core id(32,32)
as a return (source) address

2.Along the path, routing
nodes compare the
0x820 | 0x821 | | 0x822 ’ ’ 0x823 | | 0x824 | | 0x825 | ’ 0x826 ‘ ‘ 0x827 transaction address to
(32,32) ‘ (32,33) ‘ ‘ (32,34) ‘ ‘ (32,35) | ‘ (32,36) ‘ | (32,37) ‘ l (32,38) ‘ (3239) the routers hardcoded 1D
* and decide if the
O transaction should be
0x460 0x861 0x862 0x863 0x864 0x865 0x866 ox §7° sent north. east. south
(33B2) (33,33) (33,34) (33,35) (33,36) (33,37) (33,38) (33 39) ’ ’ ’
I or west.
0x§A0 0x8A1 0x8A2 0x8A3 0x8A4 0x8A5 0x8A6 0x¢ A7
(34132) (34,33) (34,34) (34,35) (34,36) (34,37) (34,38) (34 39)
0x4EO0 Ox8E1 Ox8E2 Ox8E3 Ox8E4 OX8E5 Ox8E6 Oxt E7
(35032) (35,33) (35,34) (35,35) (35,36) (35,37) (35,38) (35 39)
0x420 0x921 0x922 0x923 0x924 0x925 0x926 0x¢ 27
(3632) (36,33) (36,34) (36,35) (36,36) (36,37) (36,38) (36 39)
0x460 0x961 0x962 0x963 0x964 0x9A5 0x9A6 0x¢ A7 3. Core 39,39 receives
(3732) (37,33) (37,34) (37,35) (37,36) (37,37) (37,38) (37 39) read transaction
[fetches data from
memory and returns
0x4A0 0x9A1 0x9A2 0x9A3 0x9A4 0x9A5 0x9A6 0x¢ A7 the data 3232
@8B2) | | (3833 | [@834)| | @835 | i|@836)| |(3837)| |(@3838)| | (3839) € dala 1o core oz,
(source) using the
cMesh or xMesh
0x4E0 0x9E1 O0x9E2 0x9E3 Ox9E4 OX9ES5 Ox9E6 | , 1~ OX9E7 network.
(39,32) (39,33) (39,34) 139,35] (39,306) 139,37) (39,38) (39,39)

5.4 Direct Inter-Core Communication

Figure 9 shows how the shared-memory architecture and the eMesh network work productively
together. In the example, a dot-product routine writes its result to a memory location in another
mesh node. The only thing required to pass data from one node to another is the setting of a
pointer. The hardware decodes the transaction and determines whether it belongs to the local
node’s memory or to another node’s memory. Since the on-chip cMesh network can accept write
transactions at the same rate that a processor core can dispatch them, the example runs without
pipeline stalls, despite executing a node-to-node write in the middle of the program stream.
Using this method, programmers can reduce the cost of write-based inter-node communication to

Z€ro.

26 Copyright 2011-2012 Adapteva. All rights reserved REV 3.12.12.18

Figure 9: Pointer Manipulation Example

C-CODE ASSEMBLY
//VecA array at 0x82002000 //RO=pointer to VecA
//VecB array at 0x82004000 //R2=pointer to VecB
//remote res at 0x92004000 //R6=pointer to remote res

//R4=1loc_ sum;

for (1i=0; 1i<100; i++){ MOV R5, #100;
loc sum+=vecA[i]*vecB[i]; % _L: LDR R1, [RO], #1;
} LDR R3, [R2], #1;
_ FMADD R4,R1,R3;
remote res=loc sum;
SUB R5,R5, #1;
BNE L;
STR R4, [R6];

5.5 Arbitration Scheme

The routers at every node in all three mesh networks contain round-robin arbiters. The arbitration
hardware, in combination with the routing topologies, ensures that there are no deadlocks. The
round-robin scheme also ensures that there is some split of available bandwidth between the
competing agents on the network. The large on-chip bandwidth and non-blocking nature of the
write network guarantees that no agent needs to wait more than a few clock cycles for access to
the mesh. Applications requiring exact and deterministic bandwidth can implement network-

resource interleaving in software.

5.6 Data Sizes and Alignment

The eMesh network supports byte, halfword, word, or doubleword atomic transactions. Mesh
data is always aligned to the least-significant bits (LSBs). Maximum bandwidth is obtained with
doubleword transactions. All transactions should have addresses aligned according to the

transaction data size.

27 Copyright 2011-2012 Adapteva. All rights reserved REV 3.12.12.18

